Application Programming Interfaces (APIs) often have usage constraints, such as restrictions on call order or call conditions. API misuses, i.e., violations of these constraints, may lead to software crashes, bugs, and vulnerabilities. Though researchers developed many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. Therefore, we need to understand the capabilities and limitations of existing detectors in order to advance the state of the art. In this paper, we present the first-ever qualitative and quantitative evaluation that compares static API-misuse detectors along the same dimensions, and with original author validation. To accomplish this, we develop MuC, a classification of API misuses, and MuBenchPipe, an automated benchmark for detector comparison, on top of our misuse dataset, MuBench. Our results show that the capabilities of existing detectors vary greatly and that existing detectors, though capable of detecting misuses, suffer from extremely low precision and recall. A systematic root-cause analysis reveals that, most importantly, detectors need to go beyond the naive assumption that a deviation from the most-frequent usage corresponds to a misuse and need to obtain additional usage examples to train their models. We present possible directions towards more-powerful API-misuse detectors.
Wed 7 NovDisplayed time zone: Guadalajara, Mexico City, Monterrey change
13:30 - 15:00 | Software Analysis IIResearch Papers / Journal-First at Horizons 5 Chair(s): Myra Cohen Iowa State University | ||
13:30 22mTalk | A Systematic Evaluation of Static API-Misuse Detectors Journal-First Sven Amann Technische Universität Darmstadt, Hoan Nguyen Iowa State University, Sarah Nadi University of Alberta, Tien N. Nguyen University of Texas at Dallas, Mira Mezini TU Darmstadt DOI | ||
13:52 22mTalk | Do Android Taint Analysis Tools Keep Their Promises? Research Papers Felix Pauck Paderborn University, Germany, Eric Bodden Heinz Nixdorf Institut, Paderborn University and Fraunhofer IEM, Heike Wehrheim Paderborn University | ||
14:15 22mTalk | Neural-Augmented Static Analysis of Android Communication Research Papers Jinman Zhao University of Wisconsin-Madison, USA, Aws Albarghouthi University of Wisconsin-Madison, Vaibhav Rastogi University of Wisconsin-Madison, USA, Somesh Jha University of Wisconsin, Madison, Damien Octeau University of Wisconsin and Pennsylvania State University | ||
14:37 22mTalk | Oreo: Detection of Clones in the Twilight Zone Research Papers Vaibhav Saini University of California at Irvine, USA, Farima Farmahinifarahani University of California at Irvine, USA, Yadong Lu University of California at Irvine, USA, Pierre Baldi University of California at Irvine, USA, Crista Lopes |