Thu 8 Nov 2018 16:30 - 17:00 at Horizons 6-9F - Energy Chair(s): Diego Garbervetsky

Mobile applications regularly interact with their noisy and ever-changing physical environment. The fundamentally uncertain nature of such interactions leads to significant challenges in energy optimization, a crucial goal of software engineering on mobile devices. This paper presents Aeneas, a novel energy optimization framework for Android in the presence of uncertainty. Aeneas provides a minimalistic programming model where acceptable program behavioral settings are abstracted as knobs and application-specific optimization goals — such as meeting an energy budget — are crystallized as rewards, both of which are directly programmable. At its heart, Aeneas is endowed with a stochastic optimizer to adaptively and intelligently select the reward-optimal knob setting through a form of reinforcement learning. We evaluate Aeneas on mobile GPS applications built over Google LocationService API. Through an in-field case study that covers approximately 6500 miles and 150 hours of driving as well as 20 hours of biking and hiking, we find that Aeneas can effectively and resiliently meet programmer-specified energy budgets in uncertain physical environments where individual GPS readings undergo significant fluctuation. Compared with non-stochastic approaches such as profile-guided optimization, Aeneas produces significantly more stable results across runs.

Thu 8 Nov

Displayed time zone: Guadalajara, Mexico City, Monterrey change

15:30 - 17:00
EnergyResearch Papers / Journal-First at Horizons 6-9F
Chair(s): Diego Garbervetsky University of Buenos Aires, Argentina
15:30
30m
Talk
Approximate Oracles and Synergy in Software Energy Search Spaces
Journal-First
Bobby R. Bruce , Justyna Petke University College London, Mark Harman Facebook and University College London, Earl T. Barr
DOI
16:00
30m
Talk
Detection of Energy Inefficiencies in Android Wear Watch Faces
Research Papers
Hailong Zhang Ohio State University, Haowei Wu , Atanas Rountev Ohio State University
16:30
30m
Talk
Stochastic Energy Optimization for Mobile GPS Applications
Research Papers
Anthony Canino SUNY Binghamton, Yu David Liu State University of New York (SUNY) Binghamton, Hidehiko Masuhara Tokyo Institute of Technology