Thu 8 Nov 2018 10:30 - 10:52 at Horizons 5 - Estimation and Prediction Chair(s): Jim Herbsleb

Modern Code Review (MCR) has been widely used by open source and proprietary software projects. Inspecting code changes consumes reviewers much time and effort since they need to comprehend patches, and many reviewers are often assigned to review many code changes. Note that a code change might be eventually abandoned, which causes waste of time and effort. Thus, a tool that predicts early on whether a code change will be merged can help developers prioritize changes to inspect, accomplish more things given tight schedule, and not waste reviewing effort on low quality changes. In this paper, motivated by the above needs, we build a merged code change prediction tool. Our approach first extracts 34 features from code changes, which are grouped into 5 dimensions: code, file history, owner experience, collaboration network, and text. And then we leverage machine learning techniques such as random forest to build a prediction model. To evaluate the performance of our approach, we conduct experiments on three open source projects (i.e., Eclipse, LibreOffice, and OpenStack), containing a total of 166,215 code changes. Across three datasets, our approach statistically significantly improves random guess classifiers and two prediction models proposed by Jeong et al. (2009) and Gousios et al. (2014) in terms of several evaluation metrics. Besides, we also study the important features which distinguish merged code changes from abandoned ones.

Thu 8 Nov

fse-2018-research-papers
10:30 - 12:00: Research Papers - Estimation and Prediction at Horizons 5
Chair(s): Jim HerbslebCarnegie Mellon University
fse-2018-Journal-First10:30 - 10:52
Talk
Yuanrui Fan, Xin XiaMonash University, David LoSingapore Management University, Shanping Li
DOI
fse-2018-Journal-First10:52 - 11:15
Talk
Yuming Zhou, Yibiao YangNanjing University, China, Hongmin Lu, Lin ChenNanjing University, Yanhui Li, Yangyang Zhao, Junyan Qian, Baowen Xu
Link to publication DOI
fse-2018-research-papers11:15 - 11:37
Talk
fse-2018-research-papers11:37 - 12:00
Talk
Qingwei LinMicrosoft, China, Ken Hsieh, Yingnong DangMicrosoft, USA, Hongyu ZhangThe University of Newcastle, Kaixin SuiMicrosoft, China, Yong XuMicrosoft, China, Jian-Guang LouMicrosoft Research, Chenggang LiNortheastern University, China, Youjiang WuMicrosoft, USA, Randolph YaoMicrosoft, USA, Murali ChintalapatiMicrosoft, USA, Dongmei ZhangMicrosoft Research, China